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Preface 
2020 7th International Conference on Biomedical and Bioinformatics Engineering (ICBBE 2021) 
(Kyoto, Japan, November 06-09, 2020) was part of an international conference series with a long 
tradition. Due to the COVID-19, ICBBE 2021 was held online for the first time.  

The delegates from Australia, China, Thailand, South Korea, UK, Indonesia, USA, Italy, Japan, Czech 
Republic, Bangladesh, India, Russia, Cyprus, Portugal, and so on participated and presented in the 
conference. The primary goal of the conference is to promote research and developmental activities in 
Biomedical and Bioinformatics Engineering. Another goal is to promote scientific information 
interchange between researchers, developers, engineers, students, and practitioners working in Japan and 
abroad. 

ICBBE 2020 focused on 8 major topics this year. They are (i) Biomedical Electronics and Automation 
Technology, (ii) Medical Imaging and medical Image Processing, (iii) Cell biology and Immunology, (iv) 
Pharmacy and Clinical Medicine, (v) Bioinformatics and Biomedical Signal Analysis, (vi) Cancer 
Therapy and COVID-19, (vii) Proteomics and Biochemistry and (viii) Machine Learning and Data 
Processing in Biomedicine. Collectively, the research discussed at the conference contributed to our 
knowledge and basic understanding of biomedical engineering, bioinformatics and computational 
biology and other related topics. We are grateful to committee members for their hard work, speakers 
and the general audience of this conference. Special thanks to all reviewers and chair persons who’d 
volunteered their time in helping select high quality papers and provided invaluable constructive 
criticism to improve these papers. 

We sincerely thank everyone for their support. Last but not least, we would also like to thank the 
publisher for printing and publishing the Proceedings in such a beautiful form. We are looking forward 
to seeing you at ICBBE 2021 during November 12-15, 2021 in Kyoto, Japan! 
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ABSTRACT
Endothelial progenitor cells (EPCs) have a critical role in angiogen-
esis and vasculogenesis of coronary artery disease (CAD) patients.
Secretome of human Umbilical Cord Blood-Mesenchymal Stem Cell
(hUCB-MSCs) can promote neovascularization. Ramiprilat is an ac-
tive metabolite of ramipril that has shown benefit in cardiovascular
disease. The effect of hUCB-MSCs-derived secretome alone or com-
bination with ramiprilat on EPCs migration is not yet elucidated.
This study aimed to identify the effect of hUCB- MSC derived secre-
tome and its combination with ramiprilat on EPCs migration. EPCs
were collected from peripheral blood of CAD patient and cultured
in the Stemline II medium. Cultured EPCs were then divided into
groups of control, ramiprilat 10 µmol, hUCB-MSCs derived secre-
tome (2%, 10%, and 20%), and its combination. Themigration of EPCs
was assessed using a Boyden chamber assay. Ramiprilat and hUCB-
MSCs-derived secretome at all doses increase EPCs migration in
dose-dependent manner. Combination of hUCB-MSCs-derived se-
cretome at dose 10% and 20% and ramiprilat significantly increase
migrated cells compared to ramiprilat only and secretome only
group (p<0.001). In conclusion, hUCB-MSCs-derived secretome and
ramiprilat enhance EPCs migration and combination of those two
substances furtherly increased the migrated cells. hUCB-MSCs-
derived secretome has the potential as regenerative treatment for
CAD patients.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
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© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8822-1/20/11. . . $15.00
https://doi.org/10.1145/3444884.3444914
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1 INTRODUCTION
Coronary artery disease (CAD) has a high number of morbidity
and mortality around the world. Coronary events are expected
to occur in more than one million individuals in United States
[1]. While CAD therapies are increasingly progressing in terms of
pharmacological and percutaneous intervention techniques, there
are some patients that do not take benefits of this advancement
therapy including patients with refractory angina [15, 25]. These
patients need therapy modalities which can improve their quality
of life.

Endothelial progenitor cells (EPCs) are multipotent cell that has
an important role in the pathophysiology of coronary artery dis-
ease. EPCs are able to differentiate into mature endothelial cell,
contributes to reendothelialization after endothelial injury and
therefore improve endothelial function. EPCs also play critical role
in angiogenesis and vasculogenesis. To do this role, EPCs need to
mobilize from bone marrow to circulating blood and migrate to
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injured site [20, 31]. Unfortunately, people with low EPCs level, in-
cluding CAD patients, have an impairment in forming collateral and
compensates for the presence of stenosis [5]. Thereby, improving
circulating EPCs number and function provide therapeutic option
for CAD patients.

Human umbilical cord blood mesenchymal stem cells (hUCB-
MSCs) secrete molecules to extracellular space named secretome,
that contain soluble proteins, exosomes and micro vesicles [6, 9, 24].
This secretome promotes neovascularization, angiogenesis [6, 32],
and improves cardiac systolic function [34]. hUCB-MSCs as source
of secretome has advantage in high proliferation capacity and less
invasive collectingmethod [14]. Another researches have shown the
migration enhancing capacity of using another source of secretome
[3, 12] but the effect of hUCB-MSCs derived secretome on EPCs
migration has not yet established. Ramipril, with active metabolite
ramiprilat, is an angiotensin converting enzyme inhibitor (ACE-I)
that has been shown to increase EPCs proliferation and migration
[21, 22]. This study is aimed to identify the effect of hUCB- MSCs
derived secretome and its combination with ramiprilat on EPC
migration.

2 METHODS
2.1 Sample criteria
This experiment used blood samples that were obtained from
chronic coronary syndrome patient at dr. Soetomo General Hospital
Surabaya Outpatient Clinic. The inclusion criteria for this study
were male, aged 40–59 years old, had conducted coronary angiog-
raphy that showed >50% stenosis of left main coronary artery or in
the other coronary arteries showed 70% stenosis. We exclude pa-
tients with acute coronary syndrome, acute limb ischemia, diabetes
mellitus and anemia. This study protocol had an ethical clearance
from the Health Research Ethics Committee of Dr. Soetomo General
Hospital Surabaya. The subject had signed informed consent before
recruited. All details which included personal information were
omitted.

2.2 Secretome preparation
The preparation of hUCB-MSCs derived secretome was done in ac-
cordance to previous study [26]. hUCB-MSCs cell line (3H Biomed-
ical AB, Uppsala, Sweden) was cultured in Mesencult media (Stem-
Cell Technologies Inc., Vancouver, Canada) which contained peni-
cillin and streptomycin. While the confluency was reaching 80%,
the media was replaced with the newer media with no supplemen-
tation. hUCB-MSCs with supplement-free media then incubated for
24 hours. After incubation, the media was collected and centrifuged.
Supernatant that was resulted from centrifugation was used as a
conditioned medium that contained secretome.

2.3 EPCs isolation and culture
EPCs were collected from mononuclear cells (MNCs) of the periph-
eral blood of CAD patient. Forty milliliters of blood were diluted
with phosphate buffer saline with 2% fetal bovine serum then ficoll
histopaque was added. Centrifugation of the mixture was done
until peripheral blood MNCs (PBMNCs) layer was formed. PBM-
NCs were cultured with basal Stemline II hematopoietic stem cell

expansion medium (Sigma-Aldrich, St. Louis, MO, USA) supple-
mented with 15% fetal bovine serum and several growth factors in
the fibronectin-coated 6-well plates. The culture was maintained at
37oC with 5% CO2 in a humidified atmosphere. Non-adherent cells
were removed, and fresh medium was added.

2.4 EPCs identification
After three days of isolation and culture, EPCswere confirmed using
immunofluorescence microscope examination with FITC-labeled
anti-human CD34 antibody (Biolegend, USA) staining.

2.5 EPCs treatment
Cultured EPCs were divided into control group, treatment with 10
µmol Ramiprilat, various concentrations of hUCB-MSCs-derived
secretome (2%, 10%, and 20%) and combination of 10 µmol Ramipri-
lat and each dose of secretome. The control group was not treated
with secretome or ramiprilat. For the Ramiprilat group, cell culture
was incubated for 48 hours before transferring to the transwell.

2.6 Migration assay
This experiment used Costar®Transwell®Permeable Support (Corn-
ing, USA) with a 3.0 µm pore size membrane. EPCs migration was
assessed using a Boyden chamber assay method. A total of 5×105
EPCs were placed at the upper chamber with basal media and the
lower chamber was supplemented with basal media and secretome.
The culture was incubated at 37o C for 24 hours. The non-migratory
cells were removed manually. The migratory EPCs below the upper
chamber were fixed with 3.7% paraformaldehyde and permeabilized
with methanol. Migrated EPCs were stained with Giemsa staining
and calculated.

2.7 Statistical analysis
Data analyses were done using SPSS Statistics 23.0 from IBM to
detect significance level at p<0.05. Data distribution was evaluated
using Kolmogorov Smirnov test and comparation between groups
were calculated using one-way ANOVA test. Correlation between
variables was obtained using Spearman correlation followed by a
linear regression test.

3 RESULTS
3.1 EPCs identification
Identification of EPCs was done using immunofluorescence and
light microscope. Positive CD34 expression was used to mark EPCs.
Under a light microscope, EPCs were demonstrated as spindle-
shaped cells (Figure 1).

3.2 EPCs migration
This experiment showed that ramiprilat and all doses of hUCB-
MSCs derived secretome significantly increased EPCs migration
compared to control group (p<0.001). hUCB-MSCs derived secre-
tome increase EPCs migration in dose dependent manner (Figure
2). Ramiprilat 10 µmol had significantly higher EPCs migration
than secretome 2% (33.80±2.49 vs 17.20±1.92, p<0.001) but no sta-
tistically significant difference was observed between ramiprilat
and secretome 10% (33.80 ± 2.49 vs 27.00 ± 4.00, p>0.05). However,
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Figure 1: Microscopic picture of endothelial progenitor cells (EPCs) after three days incubation and culture (200x magnifi-
cation) (A) Staining with diamidino-2-phenylindole (DAPI) showing nuclear image of EPCs with blue fluoresence (B) FITC-
labelled anti-CD34 antibody staining of EPCs (C) Merged view of A and B (D) Spindle shape of EPCs were shown in light
microscope

secretome 20% showed a significantly higher migration compared
to the ramiprilat group (51.00±5.15 vs 33.80 ± 2.49, p<0.001).

Spearman correlation showed a significant and strong correla-
tion between hUCB-MSCs-derived secretome treatment with EPCs
migration (r=0.946; p<0.001). The linear regression test showed R-
square of 0.877. This indicated that hUCB-MSCs-derived secretome
treatment was responsible for 87.7% increase in EPCs migration.

Combination of ramiprilat 10 µmol and hUCB-MSCs derived
secretome at all doses showed significant enhancement of EPCs
migration compared to secretome only group (30.00±4.06 vs
17.20±1.92, 55.00±4.42 vs 27.00±4.00, 69.00±7.65 vs 51.00±5.15,
p<0.001). Ramiprilat only group showed higher number of EPCs mi-
gration compared to combination of Ramiprilat and secretome 2%
but not statistically significant (33.80±2.49 vs 30.00±4.06, p>0.05).
Combination of ramiprilat and secretome at 10% and 20% concentra-
tion were significanly superior to ramiprilat only group (55.00±4.42

vs 33.80±2.49 and 69.00±7.65 vs 33.80±2.49, p<0.001). The combi-
nation hUCB-MSCs derived secretome 20% and ramiprilat had the
highest number of migrated EPCs compared to another groups
(Figure 3).

4 DISCUSSION
The result of present study demonstrated that hUCB-MSCs derived
secretome, ramiprilat, and combination of both of them enhance
EPCsmigration. Secretome increased EPCsmigration in dose depen-
dent manner. Combination of ramiprilat and high dose secretome
has the highest number of EPCs migration compared to ramiprilat
alone or secretome alone. This synergistic effect might be beneficial
for treatment in chronic coronary syndrome patients.

Mesenchymal stem cells secretome contained pro angiogenic
factors including insulin-like growth factor (IGF), interleukin-6 (IL-
6), stromal cell-derived factor-1 (SDF-1), prostaglandin E2 (PGE2),
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Figure 2: Human umblical cord blood mesenchymal stem cells (hUCB-MSCs) derived secretome improves endothelial progen-
itor cells (EPCs) migration in dose dependent manner. EPCs were treated with hUCB-MSCs derived secretome at doses 2%, 10%
and 20%. EPCs migration was counted using Boyden chamber assay.

vascular endothelial growth factor (VEGF), vascular cell adhesion
protein 1 (VCAM-1), microvesicles and exosomes [6, 7, 9, 24]. Se-
cretome played role in cardiac tissue preservation, formation of
new vessels in damaged tissue, immunomodulation and cardiac
regeneration [6, 32, 33]. The results of this research are in line
with previous study using placental-derived MSCs (PL-MSCs). PL-
MSCs soluble factors significantly enhance EPC migration. Sev-
eral secreted proteins identified as candidates for EPC migration
enhancing factor [12, 13]. Another study using human amniotic
membrane-derived mesenchymal stromal cells (hAMCs) secretome
treatment also show increased EPCs migration in a dose-dependent
manner [3]. While this research shows that hUCB-MSCs derived
secretome does increase EPCs migration, the exact mechanism has
not yet been established.

During ischemic condition, the affected area releases variety
of signal factor including proangiogenic chemoattractant which
triggers homing of EPCs to the ischemic area and enhance angio-
genesis and vasculogenesis [20, 31]. Elevation of EPCs was seen in
myocardial infarction and this increase is in line with increase of
VEGF. VEGF increased EPCs migration by binding to VEGFR1 and
VEGFR2, shifting G protein signaling toward RAC and RHO which
was important for cytoskeletal rearrangement [8, 18, 29].

SDF-1 was the most potent chemoattractant for EPCs. SDF-1 con-
centration gradient from peripheral blood to ischemic area played
a critical role in EPCs migration [19]. SDF-1 bound to the CXCR4
and activated Rac GTPase protein. Its downstream pathway reg-
ulates cellular polarity and cytoskeleton changes that accomplish
directional migration [27]. The important role of CXCR4/SDF-1
axis was regulated by hypoxia-inducible factors 1α (HIF-1α ) [30].
Another research suggested that SDF-1-induced EPCs migration
was mediated through the PI3K/Akt/eNOS signal transduction path-
way [35]. hUCB-MSCs derived secretome contained SDF-1 which
can increase chemoattractant gradient. Giving hUCB-MSCs derived
secretome with a higher concentration will increase the gradient
so that EPCs will move faster toward the ischemic area. This is

indicated in our result which EPCs migration is increase along with
the increase in secretome doses.

This study shows that ramiprilat treatment increased EPCs mi-
gration better than hUCB-MSC derived secretome at dose 2% and
10%. Ramiprilat is an active metabolite of ramipril, a non-sulfhydryl
angiotensin converting enzyme (ACE) inhibitor that blocks the con-
version of angiotensin I to angiotensin II, and inhibit degradation
of bradykinin [2]. Previous studies had shown that increased in
EPCs migration occurred after 7 days of ramipril administration in
stable coronary artery disease patients [21]. The underlying mech-
anism was thought to be related to the bradykinin pathway. ACE
inhibitors block the degradation of B2R agonist and enhancing
B2R signaling [4]. EPCs stimulation with bradykinin can increase
the formation of philopodia and accelerate EPC migration [16].
Bradykinin has an important role in vascular function and involves
in eNOS expression through activation of PI3K/Akt-dependent and
independent pathway [11, 28].

The combination of ramiprilat with hUCB-MSCs derived secre-
tome shows a synergistic effect where the amount of migrated
EPCs increase significantly. The combination of ramiprilat and 20%
hUCB-MSC derived secretome shows the highest EPCs migration
number, exceeding ramiprilat only group and secretome only group.
It is speculated that the combination of these two substances ac-
celerate the migration of EPCs through various mechanism. Apart
from the paths mentioned above, hUCB-MSCs also contains a high
level of the exosome that has been investigated as proven to reduce
myocardial ischemia by inducing neovascularization and increasing
vascular tube formation [32]. hUCB-MSCs derived secretome also
has anti-inflammatory and antioxidant properties that is expected
to improve EPCs migration [10, 17]. Previous research showed that
antioxidants can increase EPCs migration [23].

5 STUDY LIMITATIONS
This research has not yet identified which molecules contained
in the hUCB-MSCs derived secretome that has major influence
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Figure 3: Comparison of EPCs migration between all groups. a: EPCs migration significantly increased compared to control
group (p<0.001), b: EPCs migration significantly increased compared to the 10 µmol ramiprilat group (p<0.001), c: EPCs mi-
gration significantly increased compared to the 2% hUCB-MSCs derived secretome group, (p<0.001), d: EPCs migration signifi-
cantly increased compared to the 10%hUCB-MSCs derived secretome group (p<0.001), e: EPCsmigration significantly increased
compared to the 20% hUCB-MSCs derived secretome group (p<0.001), f: EPCsmigration significantly increased compared to the
combination of 2% hUCB-MSCs derived secretome and ramiprilat group, (p<0.001), g: EPCs migration significantly increased
compared to the combination of 10% hUCB-MSCs derived secretome and ramiprilat group, (p<0.001) and h : EPCs migration
significantly increased compared to the combination of 20% hUCB-MSCs derived secretome and ramiprilat group, (p<0.001).

in EPCs migration. Further research is needed to verify various
mechanisms speculated to improve EPCs migration in hUCB-MSCs
derived secretome group and in combination group.

6 CONCLUSION
hUCB-MSCs-derived secretome and ramiprilat enhance EPCs mi-
gration. Combination of those two substances furtherly increased

the migrated cells. hUCB-MSCs-derived secretome has the poten-
tial as a cardiovascular regenerative treatment for the patient with
CAD.
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