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Preface

4th ICEBEHI-2023, the 4th International Conference on Electronics, Biomedical
Engineering, and Health Informatics, takes place during October 4-5, 2023 on virtual
platforms (Zoom app). The conference was organized by the Department of Medical
Electronics Technology, Health Polytechnic Ministry of Health Surabaya (Poltekkes
Kemenkes Surabaya), Surabaya, Indonesia, and Co-organized by Telkom Univer-
sity, Bandung, Indonesia, University College TATI, Malaysia, Universitas Trisakti,
Indonesia, and Walchand Institute of Technology, India. With the aim of bringing
together as a family all leading scientists, academicians, educationists, young scien-
tists, research scholars, and students to present, discuss, and exchange their experi-
ences, [nnovation ideas, and recent development in the field of electronics, biomedical
engineering, and health informatics.

The ICEBEHI-2023 conference was held online through Zoom application. More
than 100 participants (presenter and non-presenter) attended the conference, they
were from Vietnam, Malaysia, Russia, Brunei Darussalam, Azerbaijan, China, South
Korea, Australia, Poland, Libya, India, and Indonesia. The scientific program of this
conference included many topics related to electronics and biomedical engineering
as well as those in related fields. In this conference, three distinguished keynote
speakers and one invited speaker had delivered their research works in the area of
Biomedical Engineering. Each keynote speech lasted 50 minutes.

ICEBEHI-2023 Conference collects the latest research results and applications on
electronics, biomedical engineering, and health informatics. It includes a selection
of 46 papers from 93 papers submitted to the conference from universities all over
the world. All of the accepted papers were subjected to strict peer-reviewing by 2—3
expert referees. All articles have gone through a plagiarism check. The papers have
been selected for this volume because of quality and relevance to the conference.

We are very grateful to the committee which contributed to the success of this
conference. Also, we are thankful to the authors who submitted the papers, it was
the quality of their presentations and communication with the other participants that
really made this web conference fruitful. Last but not least, we are thankful to the
Lecture Note in Electrical Engineering (Springer) Publishing for their support, it was
not only the support but also an inspiration for organizers. We hope this conference



< Preface

can be held every year to make it an ideal platform for people to share views and
experiences in electronics, biomedical engineering, health informatics, and related
areas. We are expecting you and more experts and scholars around the globe to join
this international event next year.

Surabaya, Indonesia Dr. Triwiyanto Triwiyanto
triwi @poltekkesdepkes-sby.ac.id
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qhe Application of Virtual Reality Using )
Kinect Sensor in Biomedical Check for
and Healthcare Environment: A Review

Henry Candra®, Umi Yuniati, and Rifai Chai

Abstract Virtual Reality (VR) and the Kinect sensor, as promising tools in biomed-
1cal research, offers diverse applications in medical education, rehabilitation, diag-
nostics, and health research. The problem statement highlights the demand for inno-
vative solutions and introduces VR and Kinect as potential transformative tech-
nologies. This review analyzes the importance of these technologies, their contribu-
tions, and future potential. It stands out by evaluating various Kinect-based systems
in medical settings. By highlighting distinct features, advancements, and limita-
ps, it provides guidance for future research. Relevant literature was gathered from

atabases such as Google Scholar, IEEE Xplore, and PubMed. The results showcase
a wide range of applications, including patient autonomy, stroke rehabilitation, diag-
nostics, and monitoring. Despite challenges in accurate movement tracking, inte-
gration into clinical settings, and limited generalizability of findings due to small
sample sizes, VR and Kinect show potential for revolutionizing healthcare delivery
and improving patient outcomes. Their adaptability, affordability, and immersive
nature of these technologies offer promising avenues for personalized interventions,
remote healthcare, training, and enhanced patient engagement. As these technologies
evolve, continued research and development are crucial to optimize their impact in
shaping the future of healthcare.

Keywords Virtual reality - Kinect sensor - Biomedical fields - Healthcare
solutions
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1 Introduction

Virtual reality (VR) has become a promising biomedical research tool, showing great
potential in recent years. Its applications span various areas within the field, such
as in medical educational, surgical simulation, and therapy [1]. For instance, VR
instruments like headsets and motion controls have been employed in rehabilitation
therapy to : atients recovering from stroke [2] and brain injuries. By allowing
individuals to practice motor skills in a secure virtual environment, these systems
contribute to accelerating the recovery process and improve motor function [3].

In addition to rehabilitation, VR finds utility in medical education. Medical and
healthcare students can utilize VR headsets and other resources to simulate medical
procedures and explore human anatomy virtually, such as surgical simulation [4].
This immersive approach enhances their training experience, providing a more real-
1stic environment to develop their medical skills [5]. Furthermore, VR 1s valuable
in medical diagnostics, enabling doctors to make more precise diagnoses by using
data from medical imaging [3]. The mechanisms allow doctors to identify health
problems and develop more effective treatment plans quickly.

Moreover, VR 1s vital in health research, particularly in psychology, neurology,
and psychiatry. Researchers can create controlled environments using VR headsets
and observe participants’ responses and behaviors in simulated situations. These
experiments facilitate the exploration and development of novel interventions for
various health problems.

The Kinect sensor technology, as a virtual reality device, stands out for its afford-
ability, user-friendliness, and potential for advancement in medical and healthcare
applications [6] in recent years. The advent of the Kinect and associated libraries has
led to increased research interest on practical applications [7].

This review aims to comprehensively analyze the role of these technologies, the
contributions they make to healthcare, and their implications for the future. This study
distinguishes itself by conducting a systematic comparison and analysis of a diverse
range of Kinect-based systems applied to biomedical and healthcare environment.
By highlighting the unique features, innovations, and limitations of each approach,
this review provides a comprehensive overview that can guide future research and
development efforts.

2 Virtual Reality (VR) and Kinect Sensor

2.1 Definition and History of VR

Virtual reality i1s a computer program that enables individuals to connect and
engage with computer-generated surroundings, replicating real-life experiences and
involving all the senses. It offers interactive and immersive experiences, commonly
known as the two I's. However, there exists a lesser known third aspect of virtual
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reality. Virtual reality possesses applications that provide practical solutions to real-
world challenges beyond being a medium or advanced user interface. Virtual reality
professionals develop these applications. The effectivg@ess of a particular applica-
tion, or how well a simulation performs, heavily relies on the human imagination—
the third “T" of virtual reality. Thus, virtual reality represents immersion, interaction,
and imagination. Vision in virtual reality also pertains to the mind’s ability to perceive
things that do not exist [8]. 22

Virtual reality has a history spanning over 40 years. In 1962, Morton Heilig
patented the Sensorama Simulator. This first virtual reality video arcade offered
a multi-sensory experience with 3D video, motion, colour, sound, aromas, wind
effects, and a vibrating seat. Sutherland’s work @3 1966 introduced the concept of
head-mounted displays (HMDs) and the use of computer-generated scenes instead
of analog images. Brooks and his colleagues later simulated force fields and colli-
sion forces using robotic arms, paving the way for today’s haptic technology. The
military’s interest in digital simulators drove classified research, and NASA devel-
oped the Virtual Visual Environment Display (VIVED) in 1981, influencing modern
VR headsets. NASA's integration of computers and trackers created the first VR
system, while Scott Fisher’s contributions enhanced interaction with sensing gloves
and virtual sound sources. These advancements spurred international conferences
and firmly established virtual reality in the scientific and engineering communities.

VPL Inc., led by Jaron Lanier, emerged as the first to sell VR products. They
introduced the groundbreaking DataGlove, which revolutionized computer interac-
tion with its fiber-optic sensors enabling gesture-based input in 1987. However, the
DataGlove was expensive and lacked tactile feedback. In 1989, Nintendo released the
more affordable PowerGlove, although its downfall was the limited game support.
VPL also introduced the EyePhones, commercial head-mounted displays, in the late
1980s, but they suffered from low resolution and high prices. Integration challenges
persigkd, prompting VPL to develop the turnkey VR system, RB2 Model 2. Divi-
si{mlgd, introduced the integrated VR workstation, Vision, and the consequential
Provision 100 in 1992, Sense8 Co.’s WorldToolKit and Dimension International’s
Virtual Reality Toolkit (VRT3) addressed the software development challenges in
the 1990s.

Early virtual reality (VR) hardware faced several challenges in the 1990s. The VR
market was small, with most pioneering companies lacking resources for product
improvements and relying on private capital. Unrealistic public expectations ;m
funding limitations led to the disappearance of many VR companies. However, a
small group of scientists continued VR research. Significant advancements in PC
hardware, such ;1.~ﬂ:ster CPUs and graphics accelerators, facilitated VR's rebirth
in the late 1990s. The performance of PC graphics matched or exceeded high-end
SGI graphics supercomputers by 2001, thanks to rapid technological advances. Addi-
tionally, breakthroughs in VR interfaces, including lightweight and higher-resolution
LCD-based HMDs and the introduction of large-volume displays, further contributed
to the growth of the VR market.
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2.2 VR Technology and Its Components

Virtual reality (VR) systems have five main components: %Enginc, Input/Output
Devices, Software and Database, User, and Task [8]. The block diagram in Fig. 1
illustrated the architecture of VR [9]. VR Engine is the core software framework that
powers VR experiences by rendering virtual environments, managing physics simu-
lations, integrating tracking data, and enabling real-time interactivity. Input devices
capture user interactions and movements, while output devices provide sensur}fpd-
back. Examples include motion controllers, data gloves, positional trackers, head-
mounted displays (HMDs), audio systems, and haptic feedback devices. Software
and databases are essential for developing, customizing, and deploying VR appli-
cations. The developments include content creation tools, simulation software, user
interface systems, and APIs. A database or content management system stores virtual
assets like 3D models, textures, sounds, and user data. The user 1s the participant
who engages with the VR system through input and output devices, experiencing a
sense of presence and interaction. User comfont, safety, and overall experience are
crucial considerations. The task 1s the purpose and objectives of using VR, defining
specific activities, simulations, or experiences the system aims to provide. VR appli-
cations span various domains, such as gaming, entertainment, education, training,
and scientific research. The task component guides the design and development of
the virtual environment and user interactions to support the intended use case.

Through the seamless integration of these five components, virtual reality systems
generate attractive and interactive encounters, transporting users to simulated realms
where they can explore, interact, and engage in manners surpassing the physical
world’s limitations.

VR System Architecture

[/O Devices
(motion controllers, data gloves,
positional trackers, HMD, audio ‘

. o
VR Engine
(core software,

mult processor, graphic

sysigms) accelerator)
'y
: ¥
User i Software
(programmer (VR creation ools, simulation

. sofctware, UL APD)
traimee, (.‘IL‘.}

S ' & Databases
- (3D models, textures, sounds,
Task and user data)
(traming,
programming,
simulations, eic.)

gg. 1 The five components of a VR system
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2.3 The Role of Kinect Sensor in VR

The Kinect sensor 15 a motion-sensing input device initially developed by Microsoft
for gaming on the Xbox console. Kinect sensor V1, released in 2010, utilized infrared
depth sensing, an RGB camera, and microphones to capture motion and audio data
[10]. It allowed users to control games and menus through E3dy movements and voice
commands. Kinect Sensor V2, introduced 1n 2014, offers improved depth and image
sensors, which may enhance its accuracy in assessing postural control and balance
impairments. Both versions employed skeletal tracking technology, enabling immer-
sive interactions through gestures, voice, and facial recognition. However, Kinect V2
provided better performance and advanced features, making it the preferred choice
for users and developers in virtual reality, gaming, and other applications [11].

While it was primarily designed for gaming, the Kinect sensor has also found
applications in VR systems. Known as a depth camera, it revolutionizes robot percep-
tion worldwide, replacing traditional cameras and range finders. Its depth-sensing
capabilities enable detailed environment understanding and map geuemti{m,gtting
it apart from other vision systems. The Kinect sensor’s ability to capture high-quality
images and depth information about the environment at an affordable price has led
to its widespread adoption in numerous research projects [12].

Research by El-laithy et al. aims to integrate the Kinect sensor into an autonomous
ground vehicle, the Unmanned Utility Robotic Ground Vehicle (UURGV), to
enhance its capabilities. The UURGV can autonomously cut grass and navigate
outdoor areas using a laser scanner sensor and GPS. However, GPS nawig;ltimg
ineffective indoors or near solid concrete structures. They propose integrating the
Kinect sensor with other sensors, such as an inertial measurement unit (IMU), to
optimize indoor navigation. By utilizing the Kinect’s depth camera, the robot can
detect approximate distances to objects and navigate around them while also gaining
3D perception [12].

Correa et al. project introduces a perception system for autonomous navigation
of mobile surveillance robots in indoor environments. The method comprises two
components: a reactive navigation system that uses the Kinect distance sensor to
avold obstacles and an artificial neural network (ANN) trained on Kinect data to
identify various environment configurations. By combining reactive and deliberative
behaviours, the robot can navigate using a topological map represented as a graph.
The system shows promising outcomes regarding autonomous mobile robot naviga-
tion, including the ability to operate in dark environments, and its effectiveness was
verified using a Pioneer P3-AT robot [13].

The paper by Eric and Jang focuses on using the gne&:l depth sensor, a low-cost
range sensor, to detect @ijects and measure their distance, providing an affordable
and reliable option for computer vision. The results demonstrate that the Kinect
sensor and segmentation techniques can effectively deft objects and accurately
measure their distance. This research makes it suitable E obstacle avoidance and
other applications that require a vision sensor, not only for unmanned vehicles but
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also for manned vehicles to alert drivers. Computer vision plays a crucial role in
vehicles without human intervention [14].

A common use of the Kinect sensor in VR is full-body tracking. It allows users
to see their body movements replicated in the virtual world, enhancing the sense of
presence and embodiment. The method can be precious in VR applications focused
on physical training, rehabilitation, or social interactions. Additionally, the Kinect
sensor’s microphone array enables voice recognition and voice commands, allowing
users to interact with the VR environment using speech. The system can enhance the
usability and hands-free nature of VR experiences.

Cl£h et al. conducted a study to evaluate and compare the accuracy and consis-
tency of kinematic data collected from a marker-based 3D motion analysis system
and the Kinect SenVZ across different static and dynamic balance evaluations.
The results showed excellent concurrent validity for trunk angle data in active tasks
and anterior—posterior range and length in static balance tasks, indicating the
potential of the Kinect Sensor V2 as a reliable and valid tool for assessing specific
aspects of balance performance [15].

3 Applications of VR and Kinect Sensor in Biomedical
and Health Fields

Virtual reality (VR) has shown significant potential in the biomedical field, offering a
range of applications. In these domains, using virtual reality (VR) involves the imple-
mentation of computer-generated environments and simulations that deeply engage
individuals, aiming to improve medical research, education, diagnostics, healthcare
services, treatment, and rehabilitation. By leveraging VR technology, biomedical
professionals can explore and interact with virtual representations of anatomical
structures, physiological processes, and medical scenarios.

A systematic review methodology was employed to gather relevant lit ire and
projects related to the applications of VR and Kinect sensors in henllhcm‘eE&bases
such as Google Scholar, IEEE Xplore, and PubMed were searched for articles and
studies published between 2013 and 2022. Keywords included “Virtual Reality,”
“Kinect Sensor,” “Healthcare,” “Biomedical,” “Medical Applications,” and related
terms. Studies were selected based on relevance to the topic and their contributions
to the field.

For example, the paper by Kassem et al. introduces a smart digital medical bed
called MedBed, designed to address critical issues in hospitals related to timely
nurse intervention and patient independence. MedBed is intended to give patients
autonomy and enable them to take necessary actions when nurses are unavailable.
The bed incorporates features ranging from basic to highly impactful on the patient’s
vital status. It allows voice commands from the patient and communicates as part
of the Internet of Things (IoT) through a user-friendly smartphone application. A
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database 1s included to track activities such as medication and reminders. MedBed
can be implemented in medical centers with minimal infrastructure changes [16].

Hesham A. Alabbasi et al. in their research [17], aim to utilize facial emotion

recognition and brain activity to detect facial expressions and identify the corre-
sponding brain regions in stroke patients with limited verbal communication. The
proposed method involves tracking the patient’s face and using the recorded coordi-
nates to classify facial expressions through aneural network in Matlab. The results are
displayed on the screen, and while initially focused on stroke patients, the approach
can be extended to monitor individuals with conditions like Alzheimer’s or dementia.
A minimal set of 17 features was used to optimize efficiency to recognize eight
emotion expressions. At the same time, future work involves expanding the database
to include a more diverse range of individuals for improved recognition.
2 Lohse et al. reviewed the effectiveness of VR therapy in stroke survivors using
custom-built virtual environments (VE) and commercially available gaming systems
(CG). Out of the twenty-six studies included, the results showed that VR therapy
was significantly more eﬂ’ecﬂe than conventional therapy in improving body func-
tion and activity outcomes. No significant differences were found between VE and
CG interventions for these outcomes. However, participation outcomes were mainly
derived from VE studies, indicating moderate improvements in VR rehabilitation
compared to conventional therapy [2].

Thomas et al. present a modified smart wheelchair to support individuals with
restricted mobility. It is based on Elm‘lmﬂl'{:iilll}’ available manual wheelchair but
includes additional features such as a stereo depth camera, LIDAR, DC gear motor,
Joystick, and processors. Users have the flexibility to control the wheelchair manu-
ally using a joystick or hands-free through a specially developed application. The
wheelchairhas aJetson processor, enabling it to navigate autonomously withinindoor
environments and reach the desired destination. While initially designed for hospi-
tals, this affordable and lightweight wheelchair has the potential to be used in various
indoor settings. The project also provides open-source design files, allowing for
replication and accessibility to a broader audience [18].

A study by Ivan Yong-Sing, Lauet al. [19] proposgll a knee osteoarthritis severity
diagnostics system for gait analysis. The researchers collaborated with Sibu Hospital
and KPJ Sibu Specialist Hospital to collect subject data. The study utilized the law of
cosine and dot cross product as primary measures to analyze gait parameters of the
knee, ankle, and hip. The proposed system successfully {:;lptas subject movement
using the Microsoft Kinect v2 sensor and demonstrates an analysis algorithm for
various gait paramef®s. Future work includes enhancing the system with machine
learning algorithms to determine the severity grade of knee osteoarthritis.

The utilization of Kinect extends to supporting the diagnosis and treatment of
Scoliosis [20]. For Alzheimer’s disease detection, a method 1s proposed that utilizes
a Kinect V.2 camera and machine learning to evaluate the Timed Up and Go (TUG)
testand differentiate individuals with Alzheimer’s disease (AD) from healthy controls
(HC) [21]. Data on joint positions were gathered from both HC and AD participants,
and features were extracted from vanous TUG subtasks. Significant features were
identified through statistical analysis and machine learning that could effectively
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distinguish AD from HC. This approach demonstrates promise as an accessible and
convenient tool for early-stage AD assessment.

As part of a system that enables real-time rvision and monitoring of patients
in Intensive Care Units (ICU) within hospital settings, the Kinect sensor is equipped
with a range of sensors that track patients’ movements, recognize faces and process
speech. These sensors do not require physical contact with the patients and instead
utilize a Natural User Interfa » detect skeletal movements [22].

Limir Peiyl proposed a gesture recognition method based on LabVIEW and
utilizing the 3D somatosensory camera of Kinect for controlling a medical service
robot. It tracks human skeleton points, captures real-time human actions, and identi-
fies different body actions on the LabVIEW plgB®rm. The Kinect sensor comprises
various components such as a primary camera, infrared emitter, infrared depth image
camera, rotatable support, and matrix microphone. It captures depth images, colour
images, and sound to identify human body movements. The method enables effec-
tive human—computer interaction and provides convenience for assistant doctors in
completing patient rehabilitation and nursing tasks [23].

In 2022, Amira Gaberet al. developed a sys@in for evaluating facial paralysis (FP),
includingsessmenl and classification [24]. The system uses the Kinect V2 sensor
to extract real-time facial animation units (FAUs) an@@mploys artificial intelligence
and machine learning techniques for classification. A datase 375 records from
13 FP patients and 1650 records from 50 control subjects was used to ?sif}f seven
FP categories, including three severity levels for each side of the face. An ensemble
learning classifier based on SVMs was developed @achieve high prediction accuracy.
The study demonstrates the effectiveness of using FAUs acquired by the Kinect sensor
forclassifying FP and highlights the advantages of the developed systemover existing
grading scales.

Zaid A. Munder and laofei Zhong explore using of a mobile robot and Kinect
sensor to develop an intelligent system capable of monitoring and detecting hazardous
events such as falls [25]. The Kinect sensor, integrated with the mobile robot, is used
to track and detect when a person falls. When a fall 1s detected, the system sends
SMS notifications and makes emergency calls using a mobile phone installed on
the robot. The use of depth cameras, such as the Kinect sensor, offers advantages
over traditional RGB cameras, providing improved performance, lower costs, and
resilience to changes in lighting conditions.

In [26], using Kinect extends to assist blind individuals in navigation by using
real-time depth data. The system can detect various environmental patterns, such as
obstacles, walls, and stairs. These tasks pose challenges when relying on direct oper-
ation by a clinician. However, limitations exist regarding the Kinect sensor’s porta-
bility and its challenges when capturing depth information in outdoor environments
exposed to sunlight or water.

A Microsoft Kinect sensor system has been suggested for exercise control in phys-
1otherapy patients [27]. It adeptly analyzes joint onentations and evaluates muscle
group forces, as evidenced by successful experimental outcomes. Moreover, the
method holds the potential for exercise control and monitoring applications. The
study emphasizes joint range of motion detection and muscle group load analysis,
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employing the dot product technique for precise angle calculation. However, the
system has not been entailed with a 3D virtual instructor, integrating voice commands
and visual movements.

Another method proposes a personal coaching system using a Microsoft Kinect
Sensor to monitor and ensure the @Fgrect execution of physiotherapy exercises
at home [28]. The system includes an exercise-detection algorithm, a recognition
module, and a user-friendly web interface. The results demonstrate the successful
use of the system for remote physiotherapy exercises, particularly valuable during
the COVID-19 pandemic. The Kinect Sensor, known for its movement and speech
recognition capabilities, tracks joint coordinates and offers static and dynamic exer-
cises. The system shows promise for remote physiotherapy, and future work aims to
integrate it into more advanced virtual coaching systems involving social robots and
Ambient Assisted Living environments.

An approach included a system that giz&s gesture recc:-gniticmf upper body
limb movements using the Kinect sensor [29]. The system drives a mobile robotic
arm as a prototype. It can be extended to trigger various services for elderly and
wheelchair users to help them in their daily activities. The Kinect sensor captures
3D skeleton positions, which are processed by the software tool and converted into
data for the microcontroller.

Table 1 showcases additional applications of Kinect sensors within the biomedical
and healthcare environment.

Several studies have demonstrated the feasibility and effectiveness of Kinect
sensors in medical diagnostic tasks. For instance, Sooklal et al. (2014) explored the
detection of tremors using Kinect, providing a potential non-invasive tool for diag-
nosing conditions like Parkinson’s disease [6]. Similarly, Stone et al. (2014) devel-
oped a Kinect-based system that generates health alerts from gait measurements,
enabling early detection of health changes in gait patterns [31]. These applications
showcase the potential of Kinect technology to aid in the assessment and monitoring
of various medical itions.

In context of Parkinson’s disease, Amini Maghsoud Bigy et al. (2015) devel-
oped a real-time monitoring system using Kinect to detect Freezing of Gait, tremor,
and fall incidents [41]. Their work highlights the potential of Kinect sensors to track
joint positions and movements for symptom detection and monitoring. Ren et al.
(2019) introduced a multivariate analysis method using Kinect data for Parkinson’s
disease assessment, demonstrating accuracy in classifying different impairment
levels [40]. These studies exemplify the utility of Kinect sensors in advancing the
field of medical diagnostics, enabling non-invasive and remote monitonng of various
symptoms and conditions.

Kinect technology has shown promise in the realm of rehabilitation and phys-
1otherapy, providing innovative solutions for exercise guidance and assessment.
Vogiatzaki et al. (2014) developed a game-based tele-rehabilitation system using
Kinect, aiming to enhance stroke patient rehabilitation remotely [32]. Similarly,
Saratean et al. (2020) developed a remote physiotherapy application utilizing Kinect,
which enabled exercise detection and guidance for patients while allowing physio-
therapists to track progress through a web interface [28]. These studies emphasize
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the potential of Kinect-based systems to support rehabilitation and physiotherapy
efforts anfﬂariug remote guidance and monitoring capabilities.

Lai et al. (2015) developed a Kinect-based virtual rehabilitation system to train
balance in stroke patients, providing an alternative to in-person rehabilitation [45].
The findings suggest significant improvements in balance-related parameters for
stroke patients using the Kine@pfased system. Additionally, Cubukcu and Yuzgec
(2017) created a Kinect-based physiotherapy application for patients with shoulder
joint, muscle, and tendon damage, offering exercise guidance and assessment outside
of traditional healthcare settings [42]. These studies highlight the potential of Kinect
technology to revolutionize the field of rehabilitation, making exercise guidance and
assessment more accessible and convenient for patients.

In the realm of surgical training and education, Kinect technology has been
explored to enhance @PRical skills and professional vision. Feng et al. (2018) evalu-
ated the eﬂéctivenessﬂhe Virtual Pointer system in improving laparoscopic surgical
training by using Kinect for visual guidance [48]. The results indicated improved
perception and economy of movement, enhancing trainees’ adoption of professional
vision. Moreover, Kimet al. (2014) investigated the feasibility of using Kinect-based
hand tracking technology for controlling surgical robots, showcasing its potential
to revolutionize surgical control methods [49]. These studies illustrate the poten-
tial of Kinect technology to enhance surgical training and control systems, offering
innovative solutions to improve skill development and performance.

These applications above show that VR has positively impacted the biomedical
field and healthcare environment. The application of VR will continue to develop
and experience further improvements to help improve diagnosis, therapy, health
education, and many more.

3.1 Challenges and Opportunities in the Use of VR
and Kinect Sensor

While the integration of VR and Kinect technology holds promise in healthcare,
there are challenges to consider. Accuracy [41], potential tracking errors [3, 44],
and computational demands [40] are among the limitations identified in various
studies. Additionally, the adoption of these technologies in clinical settings requires
careful consideration of patient safety, data privacy [30], and effective integration
into existing healthcare workflow.

The algorithm’s performance might vary based on individual characteristics,
and further refinements and real-time testing are needed to validate its reliability.
The study also acknowledged the possibility of false positives or missed alerts and
emphasized the importance of parameter tuning by clinicians [31, 53].

The accurate and reliable capture of data stands as a central challenge in applica-
tions reliant on both Virtual Reality (VR) and Kinect-based technology. The studies
underscore the critical demand for precision in tracking movements, particularly
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within clinical contexts where precise data is imperative for diagnostic and ther-
apeutic purposes. The calibration and setup of Kinect sensors represent essential
factors in attaining accurate data [54]. Ensuring the precise positioning and orienta-
tion of these sensors can prove challenging, particularly when dealing with home-
based environments. Additionally, the presence of environmental vanables, occlu-
sions, and noise within depthdata [6] can significantly impact the accuracy of tracking
and recognition algorithms. The resolution of these issues 1s of paramount importance
to establish dependable and consistent outcomes.

The development of robust algorithms to facilitate gesture recognition, movement
tracking, and pose estimation [53] introduces a complex undertaking. This necessi-
tates careful consideration of numerous factors, including the selection of appropriate
machine learning models and feature extraction techniques. Furthermore, the diverse
nature of human anatomy and movements across individuals accentuates the need
for algorithms and systems that can adeptly adapt to accommodate these differences.
This ensures the technology’s effectiveness across a wide spectrum of users.

Real-time processing [32], especially in applications like tele-rehabilitation and
human-robot interaction, introduces challenges due to the requisite low latency and
immediate feedback. The integration of VR and Kinect-based systems into estab-
lished clinical practices mandates validation, regulatory compliance, and alignment
with healthcare standards. Clinicians seek assurance regarding the technology’s
precision, safety, and efficacy, thereby emphasizing the need for comprehensive
validation and a@erence to industry regulations.

While using virtual reality (VR) and the Kinect sensor has challenges in various
fields, it also brings numerous opportunities. VR and Kinect technologies present
a remarkable avenue for remote monitoring and rehabilitation, enabling patients to
seamlessly engage intherapy from the comfort of their homes. This holds the potential
to ameliorate patient compliance and alleviate the strain on healthcare facilities. Inte-
grating gamification and interactive exercises into rehabilitation programs imparts
an engaging and motivating dimension. The immersive qualities of VR, coupled
with the natural interaction facilitated by Kinect sensors, synergistically contribute
to heightened patient adherence and participation rates.

Beyond patient engagement, the amalgamation of VR and Kinect-based systems
yields a trove of movement data that can be systematically analyzed to yield insights
into patient progress, movement patterns, and avenues for potential enhancement.
This data-centric approach paves the way for personalized rehabilitation regimens
that cater to individual needs.

A distinctive advantage of Kinect sensors lies in their cost-effectiveness as a
depth-sensing solution, particularly when juxtaposed with more intricate motion
capture systems. The affordability of Kinect sensors extends opportunities for broader
adoption, particularly in settings with resource constraints. The meticulous tracking
and detailed movement analysis facilitated by Kinect sensors hold profound diag-
nostic potential for identifying movement disorders and evaluating the efficacy of
treatments. Moreover, VR-based diagnostic tools, enriched by Kinect data, proffer
clinicians with invaluable insights to inform their decision-making.
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VR and Kinect systems exhibit remarkable adaptability, allowing interventions
to be tailored to individual progress and capabilities. This adaptiveness, in conjunc-
tion with the synergy between VR and Kinect, extends beyond rehabilitation to
enrich human-robot interaction. The fusion of these technologies empowers robots
to comprehend and respond to human gestures and movements with heightened
intuition, fostering a more seamless interaction between humans and machines.

The collective studies underscore the strides made in the field, yet concurrently
emphasize the expansive realm for further research and innovation. The path forward
beckons the development of novel algorithms, the refinement of existing technolo-
gies, and the exploration of untapped applications. As these technologies mature, the
marriage of VR and Kinect 1s poised to revolutionize healthcare, offering solutions
that transcend physical boundaries and cater to individual needs with unprecedented
precision.

While the studies presented valuable insas, there are several limitations to
consider. First, the reviewed studies relied on relatively small sample sizes, limiting
the generalizability of the findings. The studies predominantly focused on specific
medical conditions, potentially excluding broader applications. Furthermore, the
challenges related to VR and Kinect technology. such as hardware limitations and
user comfort, were not always extensively explored within the reviewed studies.

4 Conclusion

Virtual reality (VR) has significantly changed various industries, including biomed-
ical and health. By immersing individuals in computer-generated environments, VR
offers interactive and immersive experiences, and its applications extend beyond
being a medium or advanced user interface. VR has practical solutions to real-world
challenges, and its effectiveness relies on immersion, interaction, and imagination.
The history of VR spans over 40 years, with significant advancements in hard-
ware and software components. The Kinect sensor, initially developed for gaming,
has found applications in biomedical and health fields, such as diagnostic tasks,
monitoring of various medical conditions, rehabilitation and physiotherapy, surgical
training and education. While challenges exist, VR and the Kinect sensor provide
opportunities for personalized interventions, remote healthcare delivery, training,
collaboration, and improved patient engagement. As technology evolves, the poten-
tial of VR and the Kinect sensor in healthcare is expected to grow, with a focus on
managing costs, enhancing hardware capabilities, ensuring data security, and refining
USEr eXperiences.
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Abstract Virtual Reality (VR) and the Kinect sensor, as promising tools in biomed-
ical research, offers diverse applications in medical education, rehabilitation, diag-
nostics, and health research. The problem statement highlights the demand for inno-
vative solutions and introduces VR and Kinect as potential transformative tech-
nologies. This review analyzes the importance of these technologies, their contribu-
tions, and future potential. It stands out by evaluating various Kinect-based systems
in medical settings. By highlighting distinct features, advancements, and limita-
tions, it provides guidance for future research. Relevant literature was gathered from
databases such as Google Scholar, IEEE Xplore, and PubMed. The results showcase
a wide range of applications, including patient autonomy, stroke rehabilitation, diag-
nostics, and monitoring. Despite challenges in accurate movement tracking, inte-
gration into clinical settings, and limited generalizability of findings due to small
sample sizes, VR and Kinect show potential for revolutionizing healthcare delivery
and improving patient outcomes. Their adaptability, affordability, and immersive
nature of these technologies offer promising avenues for personalized interventions,
remote healthcare, training, and enhanced patient engagement. As these technologies
evolve, continued research and development are crucial to optimize their impact in
shaping the future of healthcare.

Keywords Virtual reality - Kinect sensor - Biomedical fields + Healthcare
solutions

H. Candra - U. Yuniati (<)

Electrical Engineering Department, Faculty of Industrial Technology, Universitas Trisakti,
Jakarta, Indonesia

e-mail: 162012200005 @std.trisakti.ac.id

R. Chai
School of Science, Computing and Engineering Technologies, Swinburne University of
Technology, Melbourne, Australia

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 15
T. Triwiyanto et al. (eds.), Proceedings of the 4th International Conference on

Electronics, Biomedical Engineering, and Health Informatics, Lecture Notes in

Electrical Engineering 1182, https://doi.org/10.1007/978-981-97-1463-6_2



16 H. Candra et al.

1 Introduction

Virtual reality (VR) has become a promising biomedical research tool, showing great
potential in recent years. Its applications span various areas within the field, such
as in medical educational, surgical simulation, and therapy [1]. For instance, VR
instruments like headsets and motion controls have been employed in rehabilitation
therapy to aid patients recovering from stroke [2] and brain injuries. By allowing
individuals to practice motor skills in a secure virtual environment, these systems
contribute to accelerating the recovery process and improve motor function [3].

In addition to rehabilitation, VR finds utility in medical education. Medical and
healthcare students can utilize VR headsets and other resources to simulate medical
procedures and explore human anatomy virtually, such as surgical simulation [4].
This immersive approach enhances their training experience, providing a more real-
istic environment to develop their medical skills [5]. Furthermore, VR is valuable
in medical diagnostics, enabling doctors to make more precise diagnoses by using
data from medical imaging [3]. The mechanisms allow doctors to identify health
problems and develop more effective treatment plans quickly.

Moreover, VR is vital in health research, particularly in psychology, neurology,
and psychiatry. Researchers can create controlled environments using VR headsets
and observe participants’ responses and behaviors in simulated situations. These
experiments facilitate the exploration and development of novel interventions for
various health problems.

The Kinect sensor technology, as a virtual reality device, stands out for its afford-
ability, user-friendliness, and potential for advancement in medical and healthcare
applications [6] in recent years. The advent of the Kinect and associated libraries has
led to increased research interest on practical applications [7].

This review aims to comprehensively analyze the role of these technologies, the
contributions they make to healthcare, and their implications for the future. This study
distinguishes itself by conducting a systematic comparison and analysis of a diverse
range of Kinect-based systems applied to biomedical and healthcare environment.
By highlighting the unique features, innovations, and limitations of each approach,
this review provides a comprehensive overview that can guide future research and
development efforts.

2 Virtual Reality (VR) and Kinect Sensor

2.1 Definition and History of VR

Virtual reality is a computer program that enables individuals to connect and
engage with computer-generated surroundings, replicating real-life experiences and
involving all the senses. It offers interactive and immersive experiences, commonly
known as the two I’s. However, there exists a lesser known third aspect of virtual
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reality. Virtual reality possesses applications that provide practical solutions to real-
world challenges beyond being a medium or advanced user interface. Virtual reality
professionals develop these applications. The effectiveness of a particular applica-
tion, or how well a simulation performs, heavily relies on the human imagination—
the third “I” of virtual reality. Thus, virtual reality represents immersion, interaction,
and imagination. Vision in virtual reality also pertains to the mind’s ability to perceive
things that do not exist [8].

Virtual reality has a history spanning over 40 years. In 1962, Morton Heilig
patented the Sensorama Simulator. This first virtual reality video arcade offered
a multi-sensory experience with 3D video, motion, colour, sound, aromas, wind
effects, and a vibrating seat. Sutherland’s work in 1966 introduced the concept of
head-mounted displays (HMDs) and the use of computer-generated scenes instead
of analog images. Brooks and his colleagues later simulated force fields and colli-
sion forces using robotic arms, paving the way for today’s haptic technology. The
military’s interest in digital simulators drove classified research, and NASA devel-
oped the Virtual Visual Environment Display (VIVED) in 1981, influencing modern
VR headsets. NASA’s integration of computers and trackers created the first VR
system, while Scott Fisher’s contributions enhanced interaction with sensing gloves
and virtual sound sources. These advancements spurred international conferences
and firmly established virtual reality in the scientific and engineering communities.

VPL Inc., led by Jaron Lanier, emerged as the first to sell VR products. They
introduced the groundbreaking DataGlove, which revolutionized computer interac-
tion with its fiber-optic sensors enabling gesture-based input in 1987. However, the
DataGlove was expensive and lacked tactile feedback. In 1989, Nintendo released the
more affordable PowerGlove, although its downfall was the limited game support.
VPL also introduced the EyePhones, commercial head-mounted displays, in the late
1980s, but they suffered from low resolution and high prices. Integration challenges
persisted, prompting VPL to develop the turnkey VR system, RB2 Model 2. Divi-
sion Ltd. introduced the integrated VR workstation, Vision, and the consequential
Provision 100 in 1992. Sense8 Co.’s WorldToolKit and Dimension International’s
Virtual Reality Toolkit (VRT3) addressed the software development challenges in
the 1990s.

Early virtual reality (VR) hardware faced several challenges in the 1990s. The VR
market was small, with most pioneering companies lacking resources for product
improvements and relying on private capital. Unrealistic public expectations and
funding limitations led to the disappearance of many VR companies. However, a
small group of scientists continued VR research. Significant advancements in PC
hardware, such as faster CPUs and graphics accelerators, facilitated VR’s rebirth
in the late 1990s. The performance of PC graphics matched or exceeded high-end
SGI graphics supercomputers by 2001, thanks to rapid technological advances. Addi-
tionally, breakthroughs in VR interfaces, including lightweight and higher-resolution
LCD-based HMDs and the introduction of large-volume displays, further contributed
to the growth of the VR market.
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2.2 VR Technology and Its Components

Virtual reality (VR) systems have five main components: VR Engine, Input/Output
Devices, Software and Database, User, and Task [8]. The block diagram in Fig. 1
illustrated the architecture of VR [9]. VR Engine is the core software framework that
powers VR experiences by rendering virtual environments, managing physics simu-
lations, integrating tracking data, and enabling real-time interactivity. Input devices
capture user interactions and movements, while output devices provide sensory feed-
back. Examples include motion controllers, data gloves, positional trackers, head-
mounted displays (HMDs), audio systems, and haptic feedback devices. Software
and databases are essential for developing, customizing, and deploying VR appli-
cations. The developments include content creation tools, simulation software, user
interface systems, and APIs. A database or content management system stores virtual
assets like 3D models, textures, sounds, and user data. The user is the participant
who engages with the VR system through input and output devices, experiencing a
sense of presence and interaction. User comfort, safety, and overall experience are
crucial considerations. The task is the purpose and objectives of using VR, defining
specific activities, simulations, or experiences the system aims to provide. VR appli-
cations span various domains, such as gaming, entertainment, education, training,
and scientific research. The task component guides the design and development of
the virtual environment and user interactions to support the intended use case.

Through the seamless integration of these five components, virtual reality systems
generate attractive and interactive encounters, transporting users to simulated realms
where they can explore, interact, and engage in manners surpassing the physical
world’s limitations.

VR System Architecture

I/O Devices ‘ VR Engine
[nm.li.nn controllers, data glov s, | (core software,
positional trackers, HMD, audio multi processor, graphic

accelerator)
[
\ 4
: Software
i (VR creation tools, simulation |
: sofctware, UL API) 1

(programmer,

trainee, etc. |
) i & Databases
......................... i (3D models, textures, sounds,
Task
(training,

programming,
¢ simulations, etc.)

Fig. 1 The five components of a VR system
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2.3 The Role of Kinect Sensor in VR

The Kinect sensor is a motion-sensing input device initially developed by Microsoft
for gaming on the Xbox console. Kinect sensor V1, released in 2010, utilized infrared
depth sensing, an RGB camera, and microphones to capture motion and audio data
[10]. It allowed users to control games and menus through body movements and voice
commands. Kinect Sensor V2, introduced in 2014, offers improved depth and image
sensors, which may enhance its accuracy in assessing postural control and balance
impairments. Both versions employed skeletal tracking technology, enabling immer-
sive interactions through gestures, voice, and facial recognition. However, Kinect V2
provided better performance and advanced features, making it the preferred choice
for users and developers in virtual reality, gaming, and other applications [11].

While it was primarily designed for gaming, the Kinect sensor has also found
applications in VR systems. Known as a depth camera, it revolutionizes robot percep-
tion worldwide, replacing traditional cameras and range finders. Its depth-sensing
capabilities enable detailed environment understanding and map generation, setting
it apart from other vision systems. The Kinect sensor’s ability to capture high-quality
images and depth information about the environment at an affordable price has led
to its widespread adoption in numerous research projects [12].

Research by El-laithy et al. aims to integrate the Kinect sensor into an autonomous
ground vehicle, the Unmanned Utility Robotic Ground Vehicle (UURGV), to
enhance its capabilities. The UURGV can autonomously cut grass and navigate
outdoor areas using a laser scanner sensor and GPS. However, GPS navigation is
ineffective indoors or near solid concrete structures. They propose integrating the
Kinect sensor with other sensors, such as an inertial measurement unit (IMU), to
optimize indoor navigation. By utilizing the Kinect’s depth camera, the robot can
detect approximate distances to objects and navigate around them while also gaining
3D perception [12].

Correa et al. project introduces a perception system for autonomous navigation
of mobile surveillance robots in indoor environments. The method comprises two
components: a reactive navigation system that uses the Kinect distance sensor to
avoid obstacles and an artificial neural network (ANN) trained on Kinect data to
identify various environment configurations. By combining reactive and deliberative
behaviours, the robot can navigate using a topological map represented as a graph.
The system shows promising outcomes regarding autonomous mobile robot naviga-
tion, including the ability to operate in dark environments, and its effectiveness was
verified using a Pioneer P3-AT robot [13].

The paper by Eric and Jang focuses on using the Kinect depth sensor, a low-cost
range sensor, to detect objects and measure their distance, providing an affordable
and reliable option for computer vision. The results demonstrate that the Kinect
sensor and segmentation techniques can effectively detect objects and accurately
measure their distance. This research makes it suitable for obstacle avoidance and
other applications that require a vision sensor, not only for unmanned vehicles but
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also for manned vehicles to alert drivers. Computer vision plays a crucial role in
vehicles without human intervention [14].

A common use of the Kinect sensor in VR is full-body tracking. It allows users
to see their body movements replicated in the virtual world, enhancing the sense of
presence and embodiment. The method can be precious in VR applications focused
on physical training, rehabilitation, or social interactions. Additionally, the Kinect
sensor’s microphone array enables voice recognition and voice commands, allowing
users to interact with the VR environment using speech. The system can enhance the
usability and hands-free nature of VR experiences.

Clark et al. conducted a study to evaluate and compare the accuracy and consis-
tency of kinematic data collected from a marker-based 3D motion analysis system
and the Kinect Sensor V2 across different static and dynamic balance evaluations.
The results showed excellent concurrent validity for trunk angle data in active tasks
and anterior—posterior range and path length in static balance tasks, indicating the
potential of the Kinect Sensor V2 as a reliable and valid tool for assessing specific
aspects of balance performance [15].

3 Applications of VR and Kinect Sensor in Biomedical
and Health Fields

Virtual reality (VR) has shown significant potential in the biomedical field, offering a
range of applications. In these domains, using virtual reality (VR) involves the imple-
mentation of computer-generated environments and simulations that deeply engage
individuals, aiming to improve medical research, education, diagnostics, healthcare
services, treatment, and rehabilitation. By leveraging VR technology, biomedical
professionals can explore and interact with virtual representations of anatomical
structures, physiological processes, and medical scenarios.

A systematic review methodology was employed to gather relevant literature and
projects related to the applications of VR and Kinect sensors in healthcare. Databases
such as Google Scholar, IEEE Xplore, and PubMed were searched for articles and
studies published between 2013 and 2022. Keywords included “Virtual Reality,”
“Kinect Sensor,” “Healthcare,” “Biomedical,” “Medical Applications,” and related
terms. Studies were selected based on relevance to the topic and their contributions
to the field.

For example, the paper by Kassem et al. introduces a smart digital medical bed
called MedBed, designed to address critical issues in hospitals related to timely
nurse intervention and patient independence. MedBed is intended to give patients
autonomy and enable them to take necessary actions when nurses are unavailable.
The bed incorporates features ranging from basic to highly impactful on the patient’s
vital status. It allows voice commands from the patient and communicates as part
of the Internet of Things (IoT) through a user-friendly smartphone application. A
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database is included to track activities such as medication and reminders. MedBed
can be implemented in medical centers with minimal infrastructure changes [16].

Hesham A. Alabbasi et al. in their research [17], aim to utilize facial emotion
recognition and brain activity to detect facial expressions and identify the corre-
sponding brain regions in stroke patients with limited verbal communication. The
proposed method involves tracking the patient’s face and using the recorded coordi-
nates to classify facial expressions through a neural network in Matlab. The results are
displayed on the screen, and while initially focused on stroke patients, the approach
can be extended to monitor individuals with conditions like Alzheimer’s or dementia.
A minimal set of 17 features was used to optimize efficiency to recognize eight
emotion expressions. At the same time, future work involves expanding the database
to include a more diverse range of individuals for improved recognition.

Lohse et al. reviewed the effectiveness of VR therapy in stroke survivors using
custom-built virtual environments (VE) and commercially available gaming systems
(CG). Out of the twenty-six studies included, the results showed that VR therapy
was significantly more effective than conventional therapy in improving body func-
tion and activity outcomes. No significant differences were found between VE and
CG interventions for these outcomes. However, participation outcomes were mainly
derived from VE studies, indicating moderate improvements in VR rehabilitation
compared to conventional therapy [2].

Thomas et al. present a modified smart wheelchair to support individuals with
restricted mobility. It is based on a commercially available manual wheelchair but
includes additional features such as a stereo depth camera, LIDAR, DC gear motor,
joystick, and processors. Users have the flexibility to control the wheelchair manu-
ally using a joystick or hands-free through a specially developed application. The
wheelchair has a Jetson processor, enabling it to navigate autonomously within indoor
environments and reach the desired destination. While initially designed for hospi-
tals, this affordable and lightweight wheelchair has the potential to be used in various
indoor settings. The project also provides open-source design files, allowing for
replication and accessibility to a broader audience [18].

A study by Ivan Yong-Sing, Lau et al. [19] proposed a knee osteoarthritis severity
diagnostics system for gait analysis. The researchers collaborated with Sibu Hospital
and KPJ Sibu Specialist Hospital to collect subject data. The study utilized the law of
cosine and dot cross product as primary measures to analyze gait parameters of the
knee, ankle, and hip. The proposed system successfully captures subject movement
using the Microsoft Kinect v2 sensor and demonstrates an analysis algorithm for
various gait parameters. Future work includes enhancing the system with machine
learning algorithms to determine the severity grade of knee osteoarthritis.

The utilization of Kinect extends to supporting the diagnosis and treatment of
Scoliosis [20]. For Alzheimer’s disease detection, a method is proposed that utilizes
a Kinect V.2 camera and machine learning to evaluate the Timed Up and Go (TUG)
test and differentiate individuals with Alzheimer’s disease (AD) from healthy controls
(HC) [21]. Data on joint positions were gathered from both HC and AD participants,
and features were extracted from various TUG subtasks. Significant features were
identified through statistical analysis and machine learning that could effectively
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distinguish AD from HC. This approach demonstrates promise as an accessible and
convenient tool for early-stage AD assessment.

As part of a system that enables real-time supervision and monitoring of patients
in Intensive Care Units (ICU) within hospital settings, the Kinect sensor is equipped
with a range of sensors that track patients’ movements, recognize faces and process
speech. These sensors do not require physical contact with the patients and instead
utilize a Natural User Interface to detect skeletal movements [22].

Limin and Peiyi proposed a gesture recognition method based on LabVIEW and
utilizing the 3D somatosensory camera of Kinect for controlling a medical service
robot. It tracks human skeleton points, captures real-time human actions, and identi-
fies different body actions on the LabVIEW platform. The Kinect sensor comprises
various components such as a primary camera, infrared emitter, infrared depth image
camera, rotatable support, and matrix microphone. It captures depth images, colour
images, and sound to identify human body movements. The method enables effec-
tive human—computer interaction and provides convenience for assistant doctors in
completing patient rehabilitation and nursing tasks [23].

In 2022, Amira Gaber et al. developed a system for evaluating facial paralysis (FP),
including assessment and classification [24]. The system uses the Kinect V2 sensor
to extract real-time facial animation units (FAUs) and employs artificial intelligence
and machine learning techniques for classification. A dataset of 375 records from
13 FP patients and 1650 records from 50 control subjects was used to classify seven
FP categories, including three severity levels for each side of the face. An ensemble
learning classifier based on SVMs was developed to achieve high prediction accuracy.
The study demonstrates the effectiveness of using FAUs acquired by the Kinect sensor
for classifying FP and highlights the advantages of the developed system over existing
grading scales.

Zaid A. Munder and Jiaofei Zhong explore using of a mobile robot and Kinect
sensor to develop an intelligent system capable of monitoring and detecting hazardous
events such as falls [25]. The Kinect sensor, integrated with the mobile robot, is used
to track and detect when a person falls. When a fall is detected, the system sends
SMS notifications and makes emergency calls using a mobile phone installed on
the robot. The use of depth cameras, such as the Kinect sensor, offers advantages
over traditional RGB cameras, providing improved performance, lower costs, and
resilience to changes in lighting conditions.

In [26], using Kinect extends to assist blind individuals in navigation by using
real-time depth data. The system can detect various environmental patterns, such as
obstacles, walls, and stairs. These tasks pose challenges when relying on direct oper-
ation by a clinician. However, limitations exist regarding the Kinect sensor’s porta-
bility and its challenges when capturing depth information in outdoor environments
exposed to sunlight or water.

A Microsoft Kinect sensor system has been suggested for exercise control in phys-
iotherapy patients [27]. It adeptly analyzes joint orientations and evaluates muscle
group forces, as evidenced by successful experimental outcomes. Moreover, the
method holds the potential for exercise control and monitoring applications. The
study emphasizes joint range of motion detection and muscle group load analysis,
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employing the dot product technique for precise angle calculation. However, the
system has not been entailed with a 3D virtual instructor, integrating voice commands
and visual movements.

Another method proposes a personal coaching system using a Microsoft Kinect
Sensor to monitor and ensure the correct execution of physiotherapy exercises
at home [28]. The system includes an exercise-detection algorithm, a recognition
module, and a user-friendly web interface. The results demonstrate the successful
use of the system for remote physiotherapy exercises, particularly valuable during
the COVID-19 pandemic. The Kinect Sensor, known for its movement and speech
recognition capabilities, tracks joint coordinates and offers static and dynamic exer-
cises. The system shows promise for remote physiotherapy, and future work aims to
integrate it into more advanced virtual coaching systems involving social robots and
Ambient Assisted Living environments.

An approach included a system that utilizes gesture recognition of upper body
limb movements using the Kinect sensor [29]. The system drives a mobile robotic
arm as a prototype. It can be extended to trigger various services for elderly and
wheelchair users to help them in their daily activities. The Kinect sensor captures
3D skeleton positions, which are processed by the software tool and converted into
data for the microcontroller.

Table 1 showcases additional applications of Kinect sensors within the biomedical
and healthcare environment.

Several studies have demonstrated the feasibility and effectiveness of Kinect
sensors in medical diagnostic tasks. For instance, Sooklal et al. (2014) explored the
detection of tremors using Kinect, providing a potential non-invasive tool for diag-
nosing conditions like Parkinson’s disease [6]. Similarly, Stone et al. (2014) devel-
oped a Kinect-based system that generates health alerts from gait measurements,
enabling early detection of health changes in gait patterns [31]. These applications
showcase the potential of Kinect technology to aid in the assessment and monitoring
of various medical conditions.

In the context of Parkinson’s disease, Amini Maghsoud Bigy et al. (2015) devel-
oped a real-time monitoring system using Kinect to detect Freezing of Gait, tremor,
and fall incidents [41]. Their work highlights the potential of Kinect sensors to track
joint positions and movements for symptom detection and monitoring. Ren et al.
(2019) introduced a multivariate analysis method using Kinect data for Parkinson’s
disease assessment, demonstrating accuracy in classifying different impairment
levels [40]. These studies exemplify the utility of Kinect sensors in advancing the
field of medical diagnostics, enabling non-invasive and remote monitoring of various
symptoms and conditions.

Kinect technology has shown promise in the realm of rehabilitation and phys-
iotherapy, providing innovative solutions for exercise guidance and assessment.
Vogiatzaki et al. (2014) developed a game-based tele-rehabilitation system using
Kinect, aiming to enhance stroke patient rehabilitation remotely [32]. Similarly,
Saratean et al. (2020) developed a remote physiotherapy application utilizing Kinect,
which enabled exercise detection and guidance for patients while allowing physio-
therapists to track progress through a web interface [28]. These studies emphasize
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the potential of Kinect-based systems to support rehabilitation and physiotherapy
efforts by offering remote guidance and monitoring capabilities.

Lai et al. (2015) developed a Kinect-based virtual rehabilitation system to train
balance in stroke patients, providing an alternative to in-person rehabilitation [45].
The findings suggest significant improvements in balance-related parameters for
stroke patients using the Kinect-based system. Additionally, Cubukcu and Yuzgec
(2017) created a Kinect-based physiotherapy application for patients with shoulder
joint, muscle, and tendon damage, offering exercise guidance and assessment outside
of traditional healthcare settings [42]. These studies highlight the potential of Kinect
technology to revolutionize the field of rehabilitation, making exercise guidance and
assessment more accessible and convenient for patients.

In the realm of surgical training and education, Kinect technology has been
explored to enhance surgical skills and professional vision. Feng et al. (2018) evalu-
ated the effectiveness of the Virtual Pointer system in improving laparoscopic surgical
training by using Kinect for visual guidance [48]. The results indicated improved
perception and economy of movement, enhancing trainees’ adoption of professional
vision. Moreover, Kim et al. (2014) investigated the feasibility of using Kinect-based
hand tracking technology for controlling surgical robots, showcasing its potential
to revolutionize surgical control methods [49]. These studies illustrate the poten-
tial of Kinect technology to enhance surgical training and control systems, offering
innovative solutions to improve skill development and performance.

These applications above show that VR has positively impacted the biomedical
field and healthcare environment. The application of VR will continue to develop
and experience further improvements to help improve diagnosis, therapy, health
education, and many more.

3.1 Challenges and Opportunities in the Use of VR
and Kinect Sensor

While the integration of VR and Kinect technology holds promise in healthcare,
there are challenges to consider. Accuracy [41], potential tracking errors [3, 44],
and computational demands [40] are among the limitations identified in various
studies. Additionally, the adoption of these technologies in clinical settings requires
careful consideration of patient safety, data privacy [30], and effective integration
into existing healthcare workflow.

The algorithm’s performance might vary based on individual characteristics,
and further refinements and real-time testing are needed to validate its reliability.
The study also acknowledged the possibility of false positives or missed alerts and
emphasized the importance of parameter tuning by clinicians [31, 53].

The accurate and reliable capture of data stands as a central challenge in applica-
tions reliant on both Virtual Reality (VR) and Kinect-based technology. The studies
underscore the critical demand for precision in tracking movements, particularly
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within clinical contexts where precise data is imperative for diagnostic and ther-
apeutic purposes. The calibration and setup of Kinect sensors represent essential
factors in attaining accurate data [54]. Ensuring the precise positioning and orienta-
tion of these sensors can prove challenging, particularly when dealing with home-
based environments. Additionally, the presence of environmental variables, occlu-
sions, and noise within depth data [6] can significantly impact the accuracy of tracking
and recognition algorithms. The resolution of these issues is of paramount importance
to establish dependable and consistent outcomes.

The development of robust algorithms to facilitate gesture recognition, movement
tracking, and pose estimation [53] introduces a complex undertaking. This necessi-
tates careful consideration of numerous factors, including the selection of appropriate
machine learning models and feature extraction techniques. Furthermore, the diverse
nature of human anatomy and movements across individuals accentuates the need
for algorithms and systems that can adeptly adapt to accommodate these differences.
This ensures the technology’s effectiveness across a wide spectrum of users.

Real-time processing [32], especially in applications like tele-rehabilitation and
human-robot interaction, introduces challenges due to the requisite low latency and
immediate feedback. The integration of VR and Kinect-based systems into estab-
lished clinical practices mandates validation, regulatory compliance, and alignment
with healthcare standards. Clinicians seek assurance regarding the technology’s
precision, safety, and efficacy, thereby emphasizing the need for comprehensive
validation and adherence to industry regulations.

While using virtual reality (VR) and the Kinect sensor has challenges in various
fields, it also brings numerous opportunities. VR and Kinect technologies present
a remarkable avenue for remote monitoring and rehabilitation, enabling patients to
seamlessly engage in therapy from the comfort of their homes. This holds the potential
to ameliorate patient compliance and alleviate the strain on healthcare facilities. Inte-
grating gamification and interactive exercises into rehabilitation programs imparts
an engaging and motivating dimension. The immersive qualities of VR, coupled
with the natural interaction facilitated by Kinect sensors, synergistically contribute
to heightened patient adherence and participation rates.

Beyond patient engagement, the amalgamation of VR and Kinect-based systems
yields a trove of movement data that can be systematically analyzed to yield insights
into patient progress, movement patterns, and avenues for potential enhancement.
This data-centric approach paves the way for personalized rehabilitation regimens
that cater to individual needs.

A distinctive advantage of Kinect sensors lies in their cost-effectiveness as a
depth-sensing solution, particularly when juxtaposed with more intricate motion
capture systems. The affordability of Kinect sensors extends opportunities for broader
adoption, particularly in settings with resource constraints. The meticulous tracking
and detailed movement analysis facilitated by Kinect sensors hold profound diag-
nostic potential for identifying movement disorders and evaluating the efficacy of
treatments. Moreover, VR-based diagnostic tools, enriched by Kinect data, proffer
clinicians with invaluable insights to inform their decision-making.
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VR and Kinect systems exhibit remarkable adaptability, allowing interventions
to be tailored to individual progress and capabilities. This adaptiveness, in conjunc-
tion with the synergy between VR and Kinect, extends beyond rehabilitation to
enrich human-robot interaction. The fusion of these technologies empowers robots
to comprehend and respond to human gestures and movements with heightened
intuition, fostering a more seamless interaction between humans and machines.

The collective studies underscore the strides made in the field, yet concurrently
emphasize the expansive realm for further research and innovation. The path forward
beckons the development of novel algorithms, the refinement of existing technolo-
gies, and the exploration of untapped applications. As these technologies mature, the
marriage of VR and Kinect is poised to revolutionize healthcare, offering solutions
that transcend physical boundaries and cater to individual needs with unprecedented
precision.

While the studies presented valuable insights, there are several limitations to
consider. First, the reviewed studies relied on relatively small sample sizes, limiting
the generalizability of the findings. The studies predominantly focused on specific
medical conditions, potentially excluding broader applications. Furthermore, the
challenges related to VR and Kinect technology, such as hardware limitations and
user comfort, were not always extensively explored within the reviewed studies.

4 Conclusion

Virtual reality (VR) has significantly changed various industries, including biomed-
ical and health. By immersing individuals in computer-generated environments, VR
offers interactive and immersive experiences, and its applications extend beyond
being a medium or advanced user interface. VR has practical solutions to real-world
challenges, and its effectiveness relies on immersion, interaction, and imagination.
The history of VR spans over 40 years, with significant advancements in hard-
ware and software components. The Kinect sensor, initially developed for gaming,
has found applications in biomedical and health fields, such as diagnostic tasks,
monitoring of various medical conditions, rehabilitation and physiotherapy, surgical
training and education. While challenges exist, VR and the Kinect sensor provide
opportunities for personalized interventions, remote healthcare delivery, training,
collaboration, and improved patient engagement. As technology evolves, the poten-
tial of VR and the Kinect sensor in healthcare is expected to grow, with a focus on
managing costs, enhancing hardware capabilities, ensuring data security, and refining
user experiences.
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