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Abstract. Permeability is an important reservoir property but it is difficult to predict. An accurate
measurement of permeability values can be obtained from core data analysis. However, this
analysis is not possible to do at all interval wells in the field, so that permeability information
becomes incomplete. Then, the use of artificial neural network method can be an alternative to
predict the incomplete permeability values. This study used 191 of sandstone core samples from
Upper Cibulakan Formation in the North West Java Basin. These core data were used to
determine hydraulic flow unit (HFU) from the reservoir, and to obtain a relationship between
porosity and permeability for each HFU. The application of artificial neural network method is
done by building a database of flow zone indicator (FZI) based on its relationship with log data.
From this FZI value, the HFU class can be known. Afterward, the permeability value can be
obtained according to the equation of the relationship between porosity and permeability at each
HFU that had been generated. Artificial neural network was applied on G-19 and G-11 Well that
had 51 of core data. Based on this study, the result of permeability value is not much different
from core data at the same depth, so that this method can be applied to obtain the permeability
n uncored intervals.

g Introduction
ermeability is one of the important of reservoir propert@ggs because it is related to the ability of a rock
to flow the reservoir fluid. An accurate measurement of permeability values can be obtained from core
data analysis. However, not all well intervals in the field can be analyzed of core data so that the
permeability information becomes incomplete. Then, the probabilistic method becomes an alternative
that can be used for the process of calculating permeability values [1-3]. This probabilistic method is
used to predict parameters at uncored intervals. The selection of this method is based on the unavailable
secondary data which is log data that explicitly shows a direct relationship with the pore attributes [4,5].
The purpose of this study is to predict the permeability value of uncored intervals by applying
artificial neural network method using software. The application of artificial neural network is done by
building a database of Flow Zone Indicator (FZI) based on its relationships with the log data. From this
FZI value, the Hydraulic Flow Unit (HFU) can be known for all depth interval of the well. Afterward,
the permeability value can be determined based on the equation of the relationship between porosity and
permeability that has been generated for each HFU.
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Methodology

This study used 191 of sandstone core samples from Upper Cibulakan Formation in the North West Java
Basin. These core samples had had porosity and permeability value from core analysis in the laboratory.
These core data were used to determine hydraulic flow unit (HFU) [4.6.7], from the reservoir using
Kozeny-Carman’s approach [8.9]. In general, the Kozeny-Carman equation can be written as:

o 1 (1)
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Then, new parameter is generated that expressed in the following equation:
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From Equations (2) and (3) then a new parameter is generated, namely FZI (Flow Zone Indicator) which
can be expressed in the following equation:

1 RQI (4
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Then, to grouping the data based on the flow unit, the following equation is used:

FZlgiscrete = ROUND (2 x In(FZI) + 10,6) (5)

FiIl =

After determining HFU class using Kozeny-Carman’s approach, the relationship between porosity and
permeability was obtained for each HFU. Afterward, the application of artificial neural network is used
by building a database of FZI models based on its relationships with the log data. Artificial neural
network was applied on G-19 and G-11 Well that had 51 of core data. After obtaining FZI value for all
depth interval of the well, the class BJHFU can be determined. Then, the permeability value can be
obtained according to the equation of the relationship between porosity and permeability for each HFU
class that had been generated.

3. Results and discussion

Determination of HFU was carried out by applying Kozeny-Carman’s approach using 191 of sandstone
core samples. From the relts of this calculation, it is known that the analyzed reservoir consists of
eight different HFUs. The relationship between porosity and permeability of each HFU can be seen in
Figure 1.
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Figure 1. Porosity vs. permeability relationship for each HFU.

From the relationship of porosity and permeability, the empirical equations generated by each HFU can

be seen in table 1, where x is porosity and y is permeability.

Table 1. Empirical equations of porosity and permeability relationship for each HFU.

HFU Empirical Equation

1 y = |E+07x53%
y = 19,8170 x*¥7°
y =15918x34!
y = 50647 x347
y =1,759.9 x331°
y = 840.51 x*32
y =450.54 x*71®
y = 87.244 x3323

=B = NV N SN PR S

Then, to estimate the permeability value of uncored intervals, the calculations was carried out by
apply[ artificial neural network using software. The artificial neural network was applied on G-19 and

G-11 Well, G Field that located in the North West Java Basin.

This method is obtained by building a database of FZI model based on its relationships with the
existing log data, such as Vshale, SP log, and porosity using the software. After obtaining the FZI value.

then the HFU class owned by the G-19 and G-11 Well can be determined.

After that, the permeability value can be calculated using the equations from the relationship between
porosity and permeability in each HFU that listed in the table 1. The results of the calculations can be

seen in figure 2 and 3.
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Figure 3. Log section of permeability calculation using artificial neural network on G-11 well.
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To test the accuracy of the results of permeability value, it was also carried out the comparison between
permeability values olfflined from the artificial neural network process with the value of the core data
at the same depth that can be seen in figure 3.
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Figure 4. Validation of permeability calculation of G-19 and G-11 well.

Permeability values are on a logarithmic scale, therefore the deviation of resulting permeability from
this study is obtained by looking at the cycle differences. The number of available core data in G-11 and
G-1 ells are 51, thus the deviation of permeability values from the artificial neural network and core
data can be seen in table 2.

Table 2. The deviation of permeability values from artificial neural network and core data.

Cycle differences Number of data Percentage

Same Cycle 34 66.67 %
1 Cycle 14 2745%
>1 Cycle 3 5.88%

From these results, it can be seen that the deviation from artificial neural network is not much different,
because most of the results are in the same cycle with the core data, and only a small portion of the data
has a difference more than 1 cycle.

4. Conclusion

The results of this study show that artificial neural network can be used to predict permeability v§ue of
the reservoir rock, and the results of permeability calculations using artificial neural networks are not
much different from core data, because most of the results are in the same cycle with core data.
Permeability prediction at uncored intervals using artificial neural network method can provide benefits
to the company because permeability values can be determined without coring and its analysis, so it can
reduce the expenses of the company.
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